November 28, 2016

RSCCD Facility Planning, District Construction and Support Services 2323 N. Broadway, Suite 112, Santa Ana, CA 92706

Attn: Ms. Allison Coburn Facilities Project Manager P: (714) 480-7530 E: Coburn_allison@rsccd.edu

Re: Addendum to Geotechnical Engineering Report Proposed Science Center - Santa Ana College 1530 West 17th Street Santa Ana, California Terracon Project No. 60145101

Dear Ms. Coburn,

Terracon Consultants, Inc. (Terracon) has completed the percolation testing services for the above referenced project. These services were performed in general accordance with our Supplemental Agreement for Services dated November 3, 2016. Terracon previously prepared a Geotechnical Report for this project on August 24, 2016. This percolation test report presents the results of the subsurface exploration and provides additional geotechnical recommendations concerning earthwork and the design and construction of an infiltration system for the proposed project.

Three (3) percolation tests were conducted at the site on November 14, 2016. The general test locations are shown in Exhibit A-1 and were requested by the design team. Soil samples were collected to determine visual soil classification. Logs of the percolation borings are shown in the attached Exhibits A-2 through A-4.

Typical Subsurface Profile

Specific conditions encountered at the boring locations are indicated on the individual boring logs. Stratification boundaries on the boring logs represent the approximate location of changes in soil type in-situ, the transition between materials may be gradual. Details for the borings can be found on the boring logs attached to this report. General Notes along with the Unified Soil Classification System are provided in Exhibits A-5 and A-6. The surface materials encountered at the test locations generally consisted of 3 to 4 inch thick layer of asphalt concrete overlying a base layer with an approximate thickness of 3 to 4 inches. An asphalt binding fabric material, such as Petromat, was noted at location P-1. The subsurface materials generally consist sand with variable amounts of silt and clay.

Groundwater was not encountered in the test borings at the time of drilling. Based on previous explorations performed on-site, groundwater was encountered approximately 24 feet below the ground surface.

Percolation Test Results

Three (3) in-situ percolation tests (using falling head borehole permeability) were performed to an approximate depth of 5 feet and 10 feet below the ground surface (bgs). A 2-inch thick layer of gravel was placed in the bottom of each boring after the borings were drilled to investigate the soil profile. A 3-inch diameter perforated pipe was installed on top of the gravel layer in each boring and gravel was used to backfill between the perforated pipes and the boring sidewall to the top depth of the zone of percolation. The borings were then filled with water for a pre-soak period. At the beginning of each test, the pipes were refilled with water and readings were taken at a standardized time intervals. Percolation rates are provided in the following table:

TEST RESULTS											
Test Location (percolation test depth range)	Soil Classification	Percolation Rate, in./hr.	Infiltration Rate*, in/hr.	Average Water Head, in							
P-1 (0 - 5 ft.)	Silty Clayey Sand	144	4.8	44							
P-2 (5 - 10 ft.)	Silty Sand	205	7.9	38							
P-3 (3 - 7 ft.)	Clayey Sand	132	5.7	33							

*If proposed infiltration system will mainly rely on vertical downward seepage, the correlated infiltration rates should be used. The correlated infiltration rates were calculated using the Porchet method.

Based on our test results, the correlated infiltration rates were found be greater than 0.3 in/hr. Therefore infiltration onsite appears to be feasible from a geotechnical standpoint.

The field test results are not intended to be design rates. They represent the result of our tests, at the depths and locations indicated, as described above. The design rate should be determined by the designer by applying an appropriate factor of safety. With time, the bottoms of infiltration systems tend to plug with organics, sediments, and other debris. Long term maintenance will likely be required to remove these deleterious materials to help reduce decreases in actual percolation rates.

The percolation test was performed with clear water, whereas the storm water will likely not be clear, but may contain organics, fines, and grease/oil. The presence of these deleterious materials will tend to decrease the rate that water percolates from the infiltration systems. Design of the storm water infiltration systems should account for the presence of these materials and should incorporate structures/devices to remove these deleterious materials.

Based on the soils encountered in our borings, we expect the percolation rates of the soils could be different than measured in the field due to variations in fines and gravel content. The design elevation and size of the proposed infiltration system should account for this expected variability in infiltration rates.

Infiltration testing should be performed after construction of the infiltration system to verify the design infiltration rates. It should be noted that siltation and vegetation growth along with other factors may

affect the infiltration rates of the infiltration areas. The actual infiltration rate may vary from the values reported here. Infiltration systems should be located a minimum of 10 feet from any existing or proposed foundation system.

If you have any inquiries or comments on this report, please do not hesitate to contact the undersigned at (949) 261-0051.

Sincerely,

Terracon Consultants, Inc.

Josh R. Morgan, P.E. Senior Staff Engineer

F. Fred Buhamdan, P.E. Department Manager

Attachments: Exhibit A-1: Percolation Test Location Plan Exhibits A-2 through A-4: Boring Logs Exhibit A-5: General Notes Exhibit A-6: Unified Soil Classification System

	BORING LOG NO. P-1 Page 1 of 1															
	PROJECT: Proposed Science Center						CLIENT: RSCCD Facility Planning, District									
-	SI	ſE:	1530 West 17th Street Santa Ana, California						Santa A	ina, CA						
	GRAPHIC LOG	LOCATI	ON See Exhibit A-2		DEPTH (Ft.)	WATED EVEL	OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	TEST TYPE	TRENGTH STRENGTH STRENGTH (pst)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-Pi	PERCENT FINES
		0.3 <u>ASI</u> 0.5 enc <u>AG</u> 5.0	PHALT CONCRETE, 3" Thickness, pe countered GREGATE BASE COURSE, 3" Thickn TY CLAYEY SAND (SC-SM), brown to	tromat	5	-					0					
ID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 60145101 BORING LOGS.GPJ TERRACON2015.GDT 11/23/16	۱dvan Har	Stratifica cement Med	ation lines are approximate. In-situ, the transition	on may be gradual. See Appendix A-5 symbols and abbre	and A eviatio	A-6 fc	pr ext	blana	tion of N	Hammer T	ype: Auton	hatic SF	T Hamr	mer		
G IS NOT VALIE	band Bor	lonment Me ings backfi	ethod: lled with soil cuttings upon completion.		, vialiO	. 611										
NG LO		WA	TER LEVEL OBSERVATIONS						Во	ring Starte	d: 11/11/20	016	Borir	ng Com	oleted: 11/11/2	2016
BORI		Ground	iwalei nol encountereu	- lier		7	C		Dri	ill Rig: Har	d Auger		Drille	er: Cal F	Pac	
월 <u>1421 Ed</u> 1421 Ed Tust				21 Edi Tustir	nger n, CA	Ave		Pro	Project No.: 60145101 Exhibit: A-2							

	BORING LO	COG	NC). P-2					F	Page 1 of 1	1
PROJECT: Proposed Science Center		CLIE	NT:	RSCCD Fac	cility CA	Plann	ing, l	Distri	ict	0	
SITE: 1530 West 17th Street Santa Ana, California				· · · · · · · · · · · · · · · · · · ·							
UCCATION See Exhibit A-2	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	TEST TYPE	SOMPRESSIVE D STRENGTH D (psf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-Pi	PERCENT FINES
AGGREGATE BASE COURSE, 3" Thickness SILTY CLAYEY SAND (SC-SM), brown to redd	dish-brown 5 dish-brown 5 10 y be gradual. See Appendix A-5 and A symbols and abbreviation		plana	tion of Notes:	ner Type	e: Autom	atic SP	T Hamn	ner		
Abandonment Method: Borings backfilled with soil cuttings upon completion.											
WATER LEVEL OBSERVATIONS				Boring S	Started:	11/11/20	16	Borin	ıg Com	oleted: 11/11/2	2016
Grounawater not encountered	llerra	5)		Drill Rig	: Hand J	Auger		Drille	er: Cal F	Pac	
	1421 Edi Tustir	nger Ave		Project	No.: 60'	145101		Exhit	oit:	A-3	

	BORING LOG NO. P-3 Page 1 of 1												
Р	ROJECT: Proposed Science Center	CLIENT: RSCCD Facility Planning, District											
s	ITE: 1530 West 17th Street Santa Ana, California					Santa Ana,	CA						
GRAPHIC LOG	LOCATION See Exhibit A-2		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	TEST TYPE	COMPRESSIVE STRENGTH (psf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-PI	PERCENT FINES
T 11/23/16	0.7 AGGREGATE BASE COURSE, 4" Thickness 0.7 AGGREGATE BASE COURSE, 4" Thickness CLAYEY SAND (SC), dark brown	35	 5					0					
FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 60145101 BORING LOGS.GPJ TERRACIONZU15.GL	Boring Terminated at 7 Feet												
F SEPARATED	Stratification lines are approximate. In-situ, the transition r	may be gradual.	d A-6	for ex	olana	Hamm tion of Notes:	l er Type	e: Autom	atic SP	 T Hamr	ner		
A DIG IS NOT VALID I Apa B B	and Auger ndonment Method: orings backfilled with soil cuttings upon completion.	symbols and abbrevia	ations										
NGLO	WATER LEVEL OBSERVATIONS					Boring S	tarted:	11/11/20	16	Borir	ng Comp	oleted: 11/11/2	2016
BORI			2			Drill Rig:	Hand	Auger		Drille	er: Cal F	ac	
				er Ave CA		Project N	Project No.: 60145101 Exhibit: A-4						

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	RELATIVE DE (More than Density determin Inclue	NSITY OF COARSE-GRA 50% retained on No. 200 ed by Standard Penetratic des gravels, sands and sil	NED SOILS) sieve.) on Resistance ts.	CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance							
RMS	Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.	Descriptive Term (Consistency)	Unconfined Compressive Strength, Qu, psf	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.				
H TE	Very Loose 0 - 3		0 - 6	Very Soft	less than 500	0 - 1	< 3				
GТŀ	Loose	4 - 9	7 - 18	Soft	500 to 1,000	2 - 4	3 - 4				
LREN	Medium Dense	10 - 29	19 - 58	Medium-Stiff 1,000 to 2,000		4 - 8	5 - 9				
S	Dense	30 - 50	59 - 98	Stiff	2,000 to 4,000	8 - 15	10 - 18				
	Very Dense	> 50	<u>></u> 99	Very Stiff	4,000 to 8,000	15 - 30	19 - 42				
				Hard	> 8,000	> 30	> 42				

RELATIVE PROPORTIONS OF SAND AND GRAVEL

Descriptive Term(s) of other constituents

Trace With

Modifier

Percent of Dry Weight < 15 15 - 29 > 30

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s) of other constituents Trace With Modifier Percent of Dry Weight < 5 5 - 12 > 12

GRAIN SIZE TERMINOLOGY

Major Component of Sample Boulders Cobbles Gravel Sand Silt or Clay

Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm) 3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm Passing #200 sieve (0.075mm)

Particle Size

PLASTICITY DESCRIPTION

<u>Term</u> Non-plastic Low Medium High Plasticity Index 0 1 - 10 11 - 30 > 30

Exhibit A-5

Criteria for Assigr	ning Group Symbols	and Group Names	s Using Laboratory Tests ^A	Group Symbol	Group Name ^B		
	Gravels:	Clean Gravels:	$Cu \ge 4$ and $1 \le Cc \le 3^{E}$	GW	Well-graded gravel F		
	More than 50% of	Less than 5% fines ^C	$Cu < 4$ and/or $1 > Cc > 3^{E}$	GP	Poorly graded gravel F		
	coarse fraction retained	Gravels with Fines:	Fines classify as ML or MH	GM	Silty gravel F,G,H		
Coarse Grained Soils:	on No. 4 sieve	More than 12% fines ^C	Fines classify as CL or CH	GC	Clayey gravel F,G,H		
on No. 200 sieve	Sands:	Clean Sands:	$Cu \ge 6 \text{ and } 1 \le Cc \le 3^{E}$	SW	Well-graded sand		
	50% or more of coarse fraction passes No. 4 sieve	Less than 5% fines D	$Cu < 6$ and/or $1 > Cc > 3^{E}$	SP	Poorly graded sand		
		Sands with Fines:	Fines classify as ML or MH	SM	Silty sand G,H,I		
		More than 12% fines ^D	Fines classify as CL or CH	SC	Clayey sand ^{G, H,I}		
		Inergenie	PI > 7 and plots on or above "A" line ^J	CL	Lean clay ^{K,L,M}		
	Silts and Clays: Liquid limit less than 50	morganic.	PI < 4 or plots below "A" line ^J	ML	Silt ^{K,L,M}		
		Organia	Liquid limit - oven dried		Organic clay K,L,M,N		
Fine-Grained Soils:		Organic.	Liquid limit - not dried < 0.75	UL	Organic silt ^{K,L,M,O}		
No. 200 sieve		Inorganic:	PI plots on or above "A" line	СН	Fat clay ^{K,L,M}		
	Silts and Clays:	morganic.	PI plots below "A" line	MH	Elastic Silt K,L,M		
	Liquid limit 50 or more	Organici	Liquid limit - oven dried	ОН	Organic clay K,L,M,P		
		Organic.	Liquid limit - not dried		Organic silt ^{K,L,M,Q}		
Highly organic soils:	Primarily	PT	Peat				

^A Based on the material passing the 3-inch (75-mm) sieve

- ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- ^c Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt. GP-GC poorly graded gravel with clay.
- graded gravel with silt, GP-GC poorly graded gravel with clay. ^D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

^E Cu = D₆₀/D₁₀ Cc =
$$\frac{(D_{30})^2}{D_{10} \times D_{60}}$$

^F If soil contains \ge 15% sand, add "with sand" to group name.

^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^H If fines are organic, add "with organic fines" to group name.
- If soil contains \geq 15% gravel, add "with gravel" to group name.
- ^J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- ^K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- ^L If soil contains ≥ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- ^M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- ^N $PI \ge 4$ and plots on or above "A" line.
- ^o PI < 4 or plots below "A" line.
- ^P PI plots on or above "A" line.
- ^Q PI plots below "A" line.

lferracon